Quarry Optimisation

by S.S. Rawat & Sunayna Kalra, Holtec Consulting

SUMMARY

Increased competition and the spiraling cost of cement production are leading cement manufacturers to identify avenues for reducing costs of input materials. Better quarry management offers significant opportunities for raw material cost reduction which is directly reflected in the minimization of the overall cement production cost. Sound quarry management practices can lead to increased deposit life, improvement in mine productivity, improvement in equipment performance, better maintenance practices, better manpower utilization, etc.

Mining cost is governed by various sub activities, viz. drilling, blasting, excavation, reject handling, etc. This paper outlines the approach used for identification of cost influencers for each activity and evaluation of their impact on cost of mining operations through benchmarking and discounted cash flow technique followed by identification of action plans to optimize mining operations. Case study of a Mine Optimization study carried out for a limestone mine in central India is presented.

1. INTRODUCTION

Cement manufacturers are constantly making efforts to reduce cement production cost. Efficient quarry management is also identified as an important component of cement manufacturing process which offers a vast potential for cost reduction. Holtec Consulting has carried out quarry optimization for a number of limestone quarries whereby various components of mining activity are identified as key influencers. The activities are then studied individually and evaluated for their potential for improvement by comparing them with the relevant activities of other similar geographical and geological conditions. The impact of each improvement potential of each activity is then quantified into savings per tonne of raw material.

2. METHODOLOGY

The various components contributing to cost optimization in quarry operations as identified by Holtec are:

- Identification of Objective
- Identification of improvement area
- Data collection
- Situation analysis
- Identification of cost heads & development of Activity-Cost Head matrix
- Bench marking
- Strategic actions
- Action plans

Figure 1: Components of Cost Optimization

2.1 Identification of Objective

The first step in the process of cost optimization in quarry operations is to identify the objective since the focal point and priorities of each quarry are different. The basic objectives can be broadly quantified in terms of the major outcomes like optimal utilization of raw material for longevity of deposit life, mine planning and mining infrastructure, equipment productivity/ performance, consumables, maintenance practices, material handling, manpower, and cost.

The above objectives are fulfilled using the steps detailed ahead.

2.2 Identification of Improvement Area

A preliminary assessment of mining operations is essential to study the various activities leading to identification of potential areas for improvement and their impact on cost. The assessment and evaluation of operating data is carried out for activities including mine planning, drilling, blasting, excavation, transport, repair and maintenance, reject handling, etc.

The outcome of this first hand assessment is analyzed and verified at site and compared to the other mines located in similar geographical and geological conditions. The potential area(s) of improvement and cost saving are then identified.

2.3 Data Collection

Mine operation data for the past one to three years of mining operations including raw material characteristics, reserves, mode and method of mining, drilling and blasting parameters, performance and productivity of mining operations are collected. Time motion studies for drilling operations and excavator and dumper operations are also conducted during the course of data collection.

2.4 Situation Analysis

A detailed analysis of the data collected is carried out for all the mining activities for comparison of consistent performance measures to identify the achievable improvements, which could lead to an impact on overall production cost. For example, by analyzing planned hours, running hours and their availability, utilization and efficiency, productivity of mining equipment can be judged. Similarly, the MTBF (mean time between failure) and MTTR (mean time to repair) analysis is the indicator of the efficiency of equipment maintenance and their productivity. situation analysis leads The to the identification of areas for improvements and

cost influencers that could facilitate the achievement of the cost reduction in the identified activities.

Figure 2: Situation Analysis

The root cause analysis of problem is carried out by application of Ishikawa analysis and why-why analysis to delineate the possible problems of the cost heads.

2.5 Identification of Cost Heads & Development of Activity-Cost Head Matrix

Analysis of the cost breakdown of individual mining activity is carried out and the areas for cost reduction are identified and ranked in order of their impact on cost so as to give immediate attention to improvement priorities.

2.6 Bench Marking

Benchmarking is a method for improving and setting goals by comparison with another enterprise involved in similar activities. The performance data for each activity is compared with the corresponding data of each activity from the best operating mine in our database. The main components of bench marking in cost optimization study include drilling rate, drilling output, powder factor, diesel consumption of individual equipment, lubricant consumption, etc.

2.7 Strategic Actions

Various options for improvement are evaluated for areas that need improvement in some respect or the other. The evaluation of positive and negative implications of strategic actions leads to the formulation of actions for implementation.

2.8 Action Plans

Formulation, selection and prioritization of action plans in cost

optimization is carried out for different scenarios. The Action Plan details the observations initiating the action plan, recommendation, its applicability, the expected benefits, the proposed timing for implications, the major job activities involved in its execution, its time frame, the capital investment involved, the payback period expected, etc.

3. CASE STUDY

Holtec Consulting has carried out a Quarry Optimization and Management Study for a leading cement plant of 2.0 million tonnes per annum capacity. The limestone mine under reference is located in the central part of India. Mining was started in 1993.

The limestone is marginal grade. About 99.5% of the raw mix comprises of Run-of-Mine limestone and balance 0.5% is iron ore. The inventory of the deposit in terms of quality and quantity of reserves in the form of block model is shown in Figure 5.

Figure 5 : Block Model of the Limestone Deposit

3.1 Data Collection

The actual mine data in respect of different mining parameters was collected and a time motion study was carried out. Data analysis for a few important parameters is summarized below:

3.2 Situation Analysis

Blasting: The powder factor is found to be highly variable.

Drilling: The yield per m is found to be low and there is 40% spare drilling capacity.

Excavation: The overall utilization and efficiency of excavators is low even though their availability is high. There is excess excavator capacity.

Transport: The average utilization and efficiency of dumpers is low and the workload on dumpers is unevenly distributed. The material handling by dumpers shows a highly variable pattern.

3.3 Activity-Cost Head Matrix

The cost of the limestone raising is influenced by various activities involved in the process. The cost for each activity is further governed by various sub-activities. The Activity-Cost Head Matrix developed is shown below.

	Cost Head										
Activity	Cost ('000 USD)										
	Store & Spares	Tyres	Explosives	Lubricants	General Consumables	Repair of Machinery & outside repair	Entertainment	High Speed Diesel	Miscellaneous	Total	Cost (USD) per tonne
Drilling	26.7			9.33	0.55	7.4		73.4		117.35	0.05
Blasting	0.27	0.22	134.8		0.044	1.04		6.6		144.02	0.06
Dozing	4.38			1.51	1.95	2.27		14.6		24.73	0.01
Loading	96.35	2.67		17.93	6.67	9.13		146.3		279.04	0.12
Indirect loading	0.35	0.42			3.29	1.27	0.73			6.07	0.002
Limestone transport	122.67	45.11		13.0	4.2	25.04		178.69	0.73	389.4	0.17
Indirect transport	0.73	0.22		0.18	1.87	1.31				4.31	0.002
Limestone raising cost	251.45	48.42	134.8	41.95	18.58	47.46	0.73	419.59	0.73	964.92	0.424

The cost of limestone raising derived is compared and benchmarked against an optimally run mine in a similar geographical and geological condition.

3.4 Strategic Actions

After detailed analysis, a number of Strategic Actions for Implementation have been recommended, few of which are listed below.

Activity	Possible Improvement Actions	(+) Implications	(-) Implications			
Raw Mix	Use of alternative corrective in the	 Saving per t of clinker Use of Overburden 	 Segregated mining of alternative corrective 			
		 Decrease raw mix cost 	conective			
Mine Layout	Relocation of Crusher	 Decrease in lead distance from existing distance Saving in limestone transportation cost Use of substantial limestone blocked by existing crusher 	 Payback period of 4 years 			
Drilling	Improvement in drilling rate	 Saving in cost/t of limestone 	 Improved monitoring measures 			
	Change in drilling geometry	Saving in cost/t of limestoneIncreased yield/m of drilling	 Improvement in monitoring of operations 			
	Induction of Top hammer hydraulic drilling machine	 Increased drilling rate 	 High investment per machine 			
Excavation	Reduction in diesel consumption of excavators	 Saving in excavation cost 	 Cost of engine improvements Cost of installation of auto idlers Planning and supervision efforts to minimize shifting and idling of excavators 			
Transportation	Reduction in diesel consumption	 Saving in transportation cost 	 Cost towards improvement of loading area Close monitoring 			
	Induction of appropriate capacity trucks	Low fuel consumptionHigh productivity	 High Investment 			
Outsourcing of Services	Outsourcing of: • Tyre Handling • Engine overhauling • Transmission line over-hauling • Survey work • ANFO mixing	 Saving in manpower cost 	 Increased supervision Cost of outsourcing 			

3.5 Action Planning

Areas in which significant improvements could be effected, by virtue of the implementation of Action Plans are evaluated and the cost saving that could be derived after their implementation has been calculated. One such typical Action Plan for improvement in yield per metre of drilling is illustrated ahead.

ACTION PLAN								
No 1	ACTION	Change in c	Irilling geomet	ry in suc	cessive steps	AREA	Drilling	
OBSERVATION	BSERVATIONS The existing drilling pattern is as follows:							
	Bei	Bench			n	F	Remarks	
			(m) 3	(m)	Limestone	boulders	ith maximum cail	
	I. OB Benci		4.5	2.0	Limestone	with inter	lated soil	
			4.5 <u>5</u>		Grev Lime	Grev Limestone		
				3.5	Grev Lime	Grey Limestone		
	V. Limestone			4	Grey Lime	estone		
	VI. Marginal Limestone			4	Chocolate	Chocolate colour limestone		
	The yield per meter of drilling is 41.21 t which is low compared to 65 t per ma similar deposit conditions						machine of normal yield for	
		RECOMMEN	DATIONS				APPLICABILITY	
Recomment	Recommended drilling nattern in successive steps is as follow:							
Be	nch	Sp	acing (m)		Burde	n (m)		
I. OB Ber	ch		3		2.5			
II. Mixed E	Bench		6.5		4.5	5		
III. Limesto	ne		6.5		4.5	5		
IV. Limesto	ne		6		4			
V. Limesto	ne		6.5		4.5	5		
VI. Marginal Limestone 6.5 4.5						_		
Demarcatio								
Uniform ber								
Drilling/ blas								
Inclined dril	ing of 5° to 7°							
		EXPECTED	BENEFITS				APPLICABILITY	
The yield performed as a second se	er hole shall be incl	reased to 68.80 t	per m in succ	essive st	teps of drilling a	s follows:	Immediate	
	Bench		Spacing (m)	Burden	(m)		
Spacing (Distance	Spacing (Distance between two blast holes)			6.5	m			
Burden (Distance between two blast rows)			4 m	4.5	4.5 m		_	
Bench height			8 m	81	8 m		_	
Sub grade drilling)		0.5 m	0.5	5 m 		_	
Total drilling per	Total drilling per hole			8.3	5		_	
Yield per hole	I IIISILU IOCK		480 tonnes	58	585 tonnes		-	
Yield per meter			56.47 tonn	es 68	68.8 tonnes			
 Increase in 	Increase in output per meter of drilling shall result in a saving of:							
– With i	With initial target: USD 0.0135 / t resulting in coving of USD 40.667 per oppur							
= After f								
MAJUR JUB ACTIVITIES							PATBACK (years)	
 Computerized recording of drilling parameters 							Investment is involved	
Formulation of procedures to achieve the target								
Gradual cha								
Demonstrat								
	REFERENCE							
The saving has been estimated considering the existing drilling cost of USD 0.05 / tonne of limestone							Client supplied data	

The cost head wise saving possible due to implementation of 18 Action Plans identified during the study is illustrated in Figure 6. An overall annual saving of 1,080,000 USD can be achieved in the mines.

4.0 CONCLUSIONS

Quarry management and cost optimization are continuous processes which have the potential to glean out the weak but important components of mining operations, address these issues, affect improvement and reap the benefits in terms of reduction in Cost /tonne of raw material.

Figure 6 : Saving in annual operating cost