

POWERING SUSTAINABILITY "THE FUTURE OF ALTERNATIVE FUELS IN CEMENT INDUSTRY"

HOLTEC CONSULTING PRIVATE LIMTED Mr. Dinesh Satija, Chief General Manager, Head-Process

WHY ALTERNATIVE FUELS ?

- Depletion of Fossil Fuels like Coal, HFO & NG
- Energy Security against imported fossil fuels
- Green house gas emissions reduction
- Converting Waste to Energy
- Solution to Better Waste Management
- Reduced requirement of land required for land fill
- Reduction in Energy Costs

- Indian Cement Industries' AF journey
- Available Alternative Fuels & Types In India
- HOLTEC Role for enhancing AF Usage
- Technological Advancements
 - Preprocessing & Co-processing systems for AFR usage
- Impact Assessment on
 - Pyro Process
 - Quality of Clinker
 - Bypass requirement
- Environmental Benefits
- Holtec Global Experiences Alternative fuels in Pyro process
 - Case Studies

INDIAN CEMENT INDUSTRIES' AFR JOURNEY

INDIAN CEMENT INDUSTRIES' AF JOURNEY

TSR TARGETS – LARGE CEMENT PLAYERS

TSR%	Ambuja Cement	ACC Cement	Dalmia Cement	JK Cement	Shree Cement	Ultratech Cement	JSW Cement	J K Lakshmi	Sagar Cement
2022-23	6.4	9.2	17	14.0	3.5	5.2	7.0	5.0	3.3
2023-24	7.8	9.2	22.	16.3	2.4	5.1	10.0	7.0	3.8
Target - 2030	25.0	28.0 (by 2027- 28)	100 (by 2035)	35.0	25.0	30.0	30.0	20.0	25.0

Major Indian cement producers aim to achieve TSR levels between 25-35% by 2030, with netzero goal for 2050.

TSR %

WASTE STREAM AT 25% TSR (2030)

MSW/ SOLID WASTE GENERATION STATUS IN INDIA

Solid waste Generation in Cement Cluster Vicinity states : 32 MTPA

Saving in Overall Cost of Production = INR 175-200/ t of Clinker

GLOBAL TSR SCENARIO

% TSR (Year 2021-22)

WESTERN COUNTRIES

Regulatory and Policy Frameworks

Stringent environmental regulations & compliance	Policies Introduc mechanisms are				
Economic Considerations					
 Cost of traditional fuels rising due to environmental taxes Financially incentivized to adopt AF to reduce costs and offset the initial investment 	 Traditional fuels Financial incent Initial investmer 				
Waste Management and Supply Chain					
 Well-established waste management systems that separate & process waste materials for use as AF 	 Waste manager Collection, sorti leading to incon 				
Technological Infrastructure					
Detter environed te benelle AFe subjeb require encojelined eveteres	Lack of infrastr				

 Better equipped to handle AFs, which require specialized systems for storage, preprocessing and combustion • Invest heavily in R&D to improve AF technologies.

INDIA

ed but Regulatory frameworks & enforcement still evolving & compliance is weaker/ less stringent

(coal) is relatively cheaper tives for using AFs are relatively limited nt and the fluctuating availability of AF are deterrent.

ment infrastructure is still underdeveloped ng & processing of waste into viable fuels inefficient sistent supply of AF

ructure to handle the specific requirements of AFs such as moisture, particle size & contamination • Upgrading existing infrastructure requires high capital investment, often not feasible for smaller players.

TECHNOLOGY INFRASTRUCTURE GAPS FOR 25% TSR

- Pre-processing plants to condition RDF and other fuels to kiln requirements
- Alternative fuel storage systems and advanced fuel feeding systems to handle diverse fuel
 - types
- Bypass systems
- Multi-fuel burners
- Pyro System Capacity (Pre-Calciner, PH fan Capacity, Kiln Inlet, Bag House)
- Emission control systems (De-Nox/ De-Sox) to manage pollutants and comply with environmental regulations.
- Automation systems for optimized operations and consistency in fuel blending & dosing.

TYPES OF ALTERNATIVE FUELS

ALTERNATIVE FUELS & CHARACTERISTICS

Agricultural Biomass

Fuel Type Lower Heat Value (kcal/kg)		Moisture Content (%)	Ash Content (%)	Carbon Content (%)	Associated Emissions
Rice Husk	3150 - 3870	10	20.6	38.8	CI
Wheat Straw	3775 - 4350	7.3 - 14.2	4.5 - 8.9	44.9 - 48.8	CI
Corn Stover	3680	9.4	3.2 - 7.4	42.5	N/A
Sugarcane (Bagasse)	3440 - 4635	10 - 15	4.2	44.1	N/A

Non-Agricultural Biomass & Others

Fuel Type	Lower Heat Value (kcal/kg)	Moisture Content (%)	Ash Content (%)	Carbon Content (%)	Associated Emissions
Dewatered Sewage Sludge	2500 - 4000	75	21.8	30 - 53.9	Heavy Metals
Paper Sludge	2030	70	26	N/A	CI
Saw Dust	3940	20.6	46.9	N/A	CI (if treated wood)

Chemical & Hazardous Waste, Petroleum-Based Waste

Fuel Type	Lower Heat Value (kcal/kg)	Moisture Content (%)	Ash Content (%)	Carbon Content (%)	Associated Emissions
Spent Solvent	5020 - 5970	10.3-16.5	-	47.7	Dioxins
Paint Residues	3894 - 5500	9	34	41-51	Dioxins, Heavy Metals
Hazardous Waste	33.5	_	-	50	Dioxins, Heavy Metals
Tires	6640 - 8870	0.3	-	_	Nox, SO2, CO

ALTERNATIVE FUELS & CHARACTERISTICS

Other Wastes

Fuel Type	Lower Heat Value (kcal/kg)	Moisture Content (%)	Ash Content (%)	Carbon Content (%)	Associated Emissions
MSW	2,388 – 3,800	10-40	_	40	CI, Heavy metals, NOx
Waste Oils	5,159	5	46	44	Zn, Cd, Cu, Pb
Textiles	3,892	5.8	1.2	44.6	Sb, Cr, Zn
Automotive Shredder Residues	3,940	2.2	36.2	46.2	CI, Heavy metals

TECHNOLOGICAL ADVANCEMENTS

TYPICAL PROCESSING TECHNOLOGY

MSW PRE & CO-PROCESSING -TYPICAL FLOW SHEET

PREPROCESSING TECHNOLOGIES

Feeding System

Shredder

REFERENCE - CALCINER MODIFICATION IMPLEMENTED

Reference Plant – Calciner modification implemented for Higher AF

INCINERATOR FOR ALTERNATIVE FUELS

Pyrorotor:

Constantly revolves AF and offers long retention time for complete burn-out of:

- Whole tires and tire chips
- RDF & fluff
- Coarsest, almost unprocessed waste
- Waste with extremely poor burning properties

Hot Disc:

- Effective combustion device to maximize the TSR
- Variable retention time based on the type of Alternative Fuel is possible to ensure complete combustion
- Can accept lumpy materials Whole tires, apart from the small size materials.
- Calciner TSR of up to 60 % can be achieved.

INCINERATOR FOR ALTERNATIVE FUELS

Step Combustor:

- Optimum solution for any AF type (up to 25% TSR)
- Require calciner residence time of ~ 5

sec.

REFERENCE – CALCINER MODIFICATION IMPLEMENTED

proposed

Reference Plant – Calciner modifications with Pyro Rotor- Under consideration/

IMPACT OF AF USAGE

Type of alternative fuels and their annual availability have been the guiding factor for estimating the various impacts.

- Chlorine Bypass Requirement
- Impact on Specific Heat Consumption
- Impact on Production due to Limitation of PH fan Capacity & Calciner Volume
- Impact on Clinker Quality & Environmental Emission
- Impact of Ash & volatiles: Raw Mix optimization
- Impact of Heavy metals: The components As, Cr, Cu, Mn, Ni and V are primarily incorporated into the clinker and only above 0.1 % of the input results in gaseous emissions.
- Impact on existing WHR Power Generation with AF Usage.

ENVIRONMENTAL BENEFITS

ENVIRONMENTAL BENEFITS

Reduction on GHG emissions & Saving of Natural fossil fuels

ENVIRONMENTAL BENEFITS

- Reduction on GHG emissions.
- Potential to reduce coal usage in cement kiln by 25%, which will also reduce the coal imports and conservation of fossil fuels.
- Co-processing of AF is preferred over landfilling or incineration.
- Utilization of 8.6 million TPA hazardous waste in cement kiln will ensuring safe disposal of hazardous waste in the country.
- Pre-processing the waste will generate additional economic activity.
- Co-processing will support the country in moving towards "Zero waste to Environment"
- 20 % reduction in landfilling area requirement and reduce the pollution caused by the disposal of waste.

HOLTEC'S ROLE IN ENJANCING AF USAGE

HOLTEC'S ROLE IN ENHANCING AF USAGE

Conceptualization:

- Feasibility study Involving AF Evaluation & Impact Assessment
 - Evaluation of Identified AFs
 - Assessment of compatibility with existing system
 - Raw Mix Optimization with AF
 - Propose System Debottlenecking / Modifications requirement
 - Broad Capex estimate and simple payback

HOLTEC'S ROLE IN ENHANCING AF USAGE

Conceptualization:

- Impact Assessment of AF usage on:
 - \circ Clinker production
 - Product quality
 - \circ Emission
 - Pyro Equipment performance
 - Plant stability at different level of TSR

HOLTEC'S ROLE IN ENHANCING AF USAGE

Execution:

- Basic Engineering
- Procurement Services
- Detailed Project Engineering
- Equipment Inspection
- Site Supervision Services

Alternative Fuel Projects ~ 50 Completed

HOLTEC GLOBAL EXPERIENCES - CASE STUDIES

Cement Plant, Europe

- Existing double string, 5 stage Preheater kiln.
- Operating capacity \sim 4,500 tpd clinker.
- TSR of around ~ 38 % (32% Main burner + 6% Calciner).
- Calciner having less residence time of ~2.5 sec.
- Old generation grate cooler for clinker.

CASE STUDY 1

Type of Fuels/ AFs:

- Traditional fuel:
 - Coal

Alternate fuels:

- Animal Meal
- Seeds
- SRF (Solid Recoverable Fuel)
 Fluff
- SRF Pellets
- Saw dust

Management Target:

- Enhanced capacity up to 4,850 tpd clinker.
- Enhanced Alternate fuel usage (overall TSR of 80 %) with 97 % replacement of fuel in Calciner with AF.
- Improved operational efficiency and reliability.

CASE STUDY 1

Modifications Executed:

- 1. Modifications in Preheater-Top and bottom cyclones replaced
- 2. A New in-line calciner with enhanced retention time (≥ 8 sec)
- 3. Kiln inlet and tertiary air duct modified.
- 4. A new ID fan for handling enhanced gas volumes.

CASE STUDY 1

Modifications Executed:

5. Enhanced the capacity of the kiln/ mill process filter by extending bag length and increasing the filtering area

6. Existing clinker cooler replaced with New generation cooler along with a new kiln hood.

Modifications Executed:

- A new AF storage, handling,
 dosing, and feeding system for
 Calciner firing (to increase TSR
 from 32% to 80%)
- Upgradation of existing chloride
 Bypass system.

Key aspects considered:

- AF preprocessing:
 - Size reduction of AF 1 -2 mm
 - Homogeneity of prepared AF Minimum quality fluctuations during firing.
- Chloride By-pass system:
 - Diversion of by-pass gases to Cooling air fans (cooler recuperation zone after static grate). Meeting EU emission norms.
 - Usage of By-pass dust in Cement (to the extent possible).
- AF storage sheds' vent gas handling:
 - Diversion of AF vent gases to Cooling air fan (Quench fan) Minimizing the issue of foul smell.

Key aspects considered:

- NOx & SOx Emission Reduction:
 - A new SNCR system with ammonia injection.
 - A lime hydrate injection system to reduce SOx emissions.

Results:

- Clinker production target achieved: > 5,000 tpd clinker.
- Heat consumption is reduced by 30 Kcal/ kg clinker with Capacity Upgradation
- Overall % TSR achieved: 81 %
- Calciner % TSR achieved: ~ 99 %.
- Improved cooler heat recuperation efficiency (>75%).

Cement plant, India

Objectives

Carry out Technical Feasibility Study to achieve the target TSR of 35%

Identified Alternative Fuels (AFs) & Target TSR

Fuel Type	Wet Qty (TPD)	Moisture (%)	NCV (Kcal/kg)	% TSR
RDF	1546.7	40	2450	29.8
Pre-process	100.0	40	3500	2.7
Organic Barrels	16.7	40	3900	0.5
Biomass	55.6	10	3036	2.0
Total	-	-	-	35.0

CASE STUDY 2

Operating Conditions:

- Clinker Production: 8,372 TPD
- TSR: 20%
- Specific Heat Consumption: 741 kcal/kg clinker
- Chloride content in Hot Meal: 0.44% (well below the norm of 1.5%).
- No Bypass system is required for the current operating level.
- Existing Calciner Residence Time ~ 14 Sec

Impact Assessment (35% TSR @ 10,000 TPD Clinker)

Heat Consumption:

- Estimated Increase in Heat Consumption 23 kcal/kg clinker (with 35% TSR (with RDF of 40%) Moisture).
 - **Production Impact:**
- Wet RDF (40% Moisture): Estimated Reduction in clinker production by 1,015 TPD (without modifications).

Bypass Requirement:

- \circ 4% Chlorine bypass required due to high chlorine input of ~620 grams per ton of clinker.
- A kiln bypass of 12% (design) proposed to accommodate higher AF usage in the future.

Modifications proposed to sustain 10,000 tpd clinker

- 1. New PH Fan
- 2. Top Stage Cyclone Replacement:
 - Expected saving in pressure drop: ~160 mmWC
 - Reduction in return dust: 4–6%
 - Saving in specific fuel consumption: 6–8 kcal/kg clinker.
- 3. TAD Modification:
 - Enlargement of TAD diameter from 2.9 m to 3.5 m.
 - Alternatively, installation of a parallel second TAD.

Results:

Target of 35% TSR achieved @ 10,000 tpd clinker, after implementation of Modifications.

THANK YOU

Holtec Consulting Pvt Ltd

Holtec Centre A Block, Sushant Lok-I, Gurgaon, India

info@holtecnet.com

+91 124 4047900

www.holtecnet.com