Roadmap for Decarbonization Indian Cement Industry

HOLTEC CONSULTING PRIVATE LIMTED

Mr. Dinesh Satija, Head-Process

ABOUT HOLTEC

- Created in year 1967
- Services firm focused on the Global Cement Industry: Advisory, Engineering, Plant Operations & Maintenance, AFR & Solutions

- > Also offer services in Highways, Power & Engineering Support Services
- > 4,800+ assignments for 1,000+ clients in 90+ countries
- Full fledged engineering and business consulting firm
- Strong execution processes (ISO certified)
- > Total Solutions: Integrated service from concept through commissioning and operations.
- Industry expertise with 6,500 man-years experience.
- Extensive database built over 55+ years.
- > Offices: 3 in India, 1 in UAE (Sharjah) and various other site offices.

EXPERIENCE IN THE GLOBAL CEMENT

4800+ projects in 100+ countries for 1000+ clients

Type of Projects	No. of Projects
Due Diligence, Valuations and Investment Studies	190+
Raw Material Studies	750+
Feasibility, Market and Strategic Studies	1,100+
Performance Enhancement and Audit Studies	320+
Project Engineering, Procurement, Field Services, etc.	2,260+
Other Miscellaneous Studies	180+
Total	4,800+

- ➤ Engineered over 100 large-sized projects, greenfield and brownfield; 20+ with kiln capacities of >8,000 tpd and 30+ with kiln capacities of 6,000-8,000 tpd
- Successfully executed 300+ Performance Enhancement, Process Advancement and Alternative Fuels projects worldwide

Decarbonization

Decarbonization?

- The process of reducing CO₂ emissions from industrial, energy and transport sectors.
- Involves transitioning from fossil fuels to renewable or low-carbon alternatives.
- Includes technological shifts, process improvements to limit carbon output.

GLOBAL CO2 EMISSION FROM FOSSIL FUEL CONSUMPTION

Global CO2 emissions is 41.6 Billion tones (2024)

Why We Need Decarbonization

Combat Climate Change

Reduces greenhouse gases to slow global warming

Lowers pollution, improving air and respiratory health.

Ensure Energy Security

Promotes stable, renewable energy over fossil fuel dependency.

Boost Economic Growth

Encourages green jobs and clean technology investments worldwide.

National Commitment

Net-Zero Emissions By 2070

India has committed to achieving net-zero carbon dioxide (and all greenhouse gas) emissions by 2070. This pledge was announced at COP26 in Glasgow on November 1, 2021

Major Climate Commitments

- 1. Expand non-fossil energy capacity to 500 GW by 2030
- 2. Meet 50% of total energy requirements using renewable sources by 2030 (Currently 50%)
- 3. Reduce projected carbon emissions by 1 billion tonnes by 2030 (Baseline: 1.56 Billon Tons 2005)
- 4. Reduce **carbon intensity** (CO₂ emissions per unit of GDP) by **45% by 2030** (*Baseline: 425.3 tCO2e per million \$ GDP PPP in 2005*)
- 5. Achieve net-zero emissions by 2070

Require deep Decarbonization across energy, transport, industry & buildings

CO₂ Emission Sources In Cement Production

Decarbonisation Levers

- 1) Clinker Efficiency (Thermal Energy)
- 2) Alternative Fuels (AFR)
- 3) Supplementary Cementitious Materials (SCMs)
- 4) Decarbonisation of Electricity
- 5) New Binders
- 6) Recarbonation
- 7) Cement-Use Efficiency
- 8) Carbon Capture, Utilization and Storage (CCUS)

Indian Cement Industry Decarbonization Targets

Goal	2030 Targets	2050 Targets
Emissions Intensity Reduction	~35 – 40% (tCO₂/ton cement)	~55–60%
Blended Cement Share	>75% (PPC, PSC, LC³)	Shift to net-zero cement (LC³, geopolymer, etc.)
Thermal Substitution Rate (TSR)	25–30%	>50%
Renewable Energy Use	>30%	Widespread use of green hydrogen, alternative fuels, biofuels
Waste Heat Recovery (WHRS)	>60%	≥ 90%
Carbon Capture & Storage (CCS)	Pilot projects initiated	Starts Scaling

Decarbonization Roadmap - Indian Cement Industry

Clinker efficiency (Thermal Energy)

Goal: Reduce specific thermal energy consumption in clinker production.

Achievements:

- ✓ Indian cement industry largely uses energy-efficient dry kiln processes.
- ✓ Average SHC reduced to 731 kcal/kg clinker in 2020–21.
- ✓ Target SHC by 2070: 705 kcal/kg clinker. (taking into consideration the increase in energy consumption due to deployment of CCUS)

Methods:

✓ Includes reduction in SEC-thermal, increased use of biomass and adoption of green fuels and technologies.

CO₂Reduction Potential by 2070: 2.5-3.5%

Alternative Fuels

Goal: Replace coal and pet coke with low-carbon fuels.

Target fuel mix by 2070:

✓ 50% green hydrogen

√ 35% waste-derived fuels

√ 15% biomass

Challenges: Supply chain, segregation, and preprocessing.

CO₂Reduction Potential: 21-24%

Supplementary Cementitious Materials (SCMs)

- SCMs reduce the clinker factor, which in turn reduces energy use and CO₂ emissions.
- Major SCMs: Fly ash, GGBS (slag), calcined clay, & limestone.
- Blended Cement Share Target by 2070:
 - ✓ 90% of cement to be blended types (PPC, PSC, PLC, PCC, LC3, etc.)
 - ✓ Clinker factor to reduce from 0.75 (2020) \rightarrow 0.56 (2070)

CO₂Reduction Potential: 18-25%

Supplementary Cementitious Materials (SCMs)

Decarbonization of Electricity

Goal:

- ✓ Improve electrical efficiency (SPC from 73 → 65 kWh/ton cement).
- ✓ Increase Waste Heat Recovery (WHR) capacity (538 MW [achieved] vs. ~ 1100 MW [potential].
- ✓ Shift to green electricity with renewable energy use

CO₂Reduction Potential: 9.5 –18.5 %

New Binders

➤ New Emerging Binders that are being developed with a goal to reduce carbon emissions, improving durability & used as alternatives to traditional Portland cement

Binder Type	CO ₂ Reduction
LC3	~40%
Calcium Sulfoaluminate (CSA) Cements	30–40%
Geo polymer	~80%
Magnesium-based Cements	Up to 100%
Carbonatable	Up to 70%
Celitement	~50%

CO₂Reduction Potential: 0.2-1%

Cement Use Efficiency

Key Strategy: Shift from bagged to bulk cement (e.g., Advanced Practices:

Ready-Mix Concrete - RMC).

Concrete Usage Breakdown (2020):

- → 65% in structural applications
- → 29% via RMC; **36% mixed on-site**
- → 35% in non-structural applications

Levers for Efficiency:

- Improved grading of aggregates
- Use of plasticizers to lower water-cement ratio
- Quality control in RMC plants

- Precast and pre-engineered building components
- Use of AAC blocks instead of clay bricks
- Replacing mortar with adhesives
- Construction & Demolition (C&D) waste recycling

Technology Integration:

- 3D concrete printing
- Automated concrete design systems
- Optimization of structural geometry

Carbon Capture, Utilization & Storage (CCUS)

CCUS is the process of:

- □ Separating CO2 from flue gases of point sources such as stacks of cement plants, power plants, steel and iron plants etc.,
- Transporting it to a storage site or utilization site.
- □ Depositing it or utilizing it, thereby not letting CO2 enter the atmosphere for mitigation of global warming.

CO₂ Reduction Potential: 19-45%

Post-combustion CO₂ capture

Post-combustion CO₂ capture involves removing CO₂ **after** fossil fuel has been burned. The CO₂ is separated from the flue gases before they are released into the atmosphere.

It's the most suitable method for a cement plants, since it doesn't require fundamental changes to the combustion system.

Amine Scrubbing Technology

MEA (Monoethanolamine) is a primary amine solvent, used for post-combustion CO₂ capture due to its high reactivity with CO₂, commercial maturity, and relative simplicity in plant integration.

- Type: Chemical absorption (amine-based)
- Status: Most mature post-combustion CO₂ capture technology

Key Performance Metrics

Metric	Typical Value
CO₂ Capture Efficiency	85–95%
CO₂ Purity	95–99%
Energy Requirement	3.5–4.0 GJ/ton CO₂ (with MEA)

Amine Scrubbing Technology

CCU – Current Status, Initiatives & Chalenges

□ Current Status in India

- ✓ No large-scale implementation yet.
- ✓ Pioneers: A few Indian cement companies exploring pilots.
- ✓ Barriers: High costs, lack of infrastructure, and need for policy/funding support.

□ Global & Indian Initiatives

- ✓ Reports: GCCA, Global CCS Institute studies on CO₂ hubs, storage, and financing.
- ✓ NITI Aayog Recommendation: Develop CCUS clusters (shared infrastructure for industries).

□ Challenges

- ✓ Capex: High upfront costs for capture, transport, and storage.
- ✓ Infrastructure: Requires pipelines, storage sites (e.g., depleted oil fields).
- ✓ Energy Demand: Additional power needed for CO₂ separation.

Indicative Cost for 1 MMTPA CO2 Capture

Parameter	UOM	Value	Remarks
Captured CO2	Million tons of CO2	1.0	From ~4,000 TPD Plant
CAPEX of CO ₂ Capture Unit (1 MMTPA)	Million USD	~ 450	
OPEX of CO ₂ Capture from Cement Plant	USD/ t of CO2	~ 25	

Utilization Pathways for Captured CO₂

Utilization Pathways for Captured CO₂

LIQUID FUEL: SUSTAINABLE AVIATION FUEL(SAF)

SAF: Sustainable Aviation Fuel

What is SAF?

- > SAF is an alternative jet fuel that is made from non-petroleum (non-fossil) feedstocks.
- > Has similar chemical and physical properties to conventional jet fuel.
- > Significantly lower carbon footprint over its entire lifecycle.

Key Characteristics of SAF

- > Reduced Emissions: Reduce GHG emissions by up to 80%
- > **Drop-in Fuel**: Blended with conventional jet fuel (typically up to a 50% blend, though efforts are underway for 100% SAF flights)
- Non-Petroleum Feedstocks: Unlike conventional jet fuel derived from crude oil, SAF comes from a variety of sustainable sources

SAF: Sustainable Aviation Fuel

Global Benchmarks (EU, China, USA)

Comparative Summary (India vs. Global Benchmarks)

Metric	India	EU	China	USA
Avg. Clinker Ratio	~70%	~75%	~65-75%	~75-80%
AFR Use	5-10%	40-70%	10-20%	20-25%
WHR Adoption	~50% plants	~90% plants	~80% plants	~70% plants
CCUS Progress	Pilot stages	Operational	Early stages	Scaling up
Carbon Pricing	None	€80-100/ton	Pilot ETS	\$85/ton

Decarbonization Initiatives In The Indian Cement Industry

Decarbonization Initiatives – Case Study

Parameter	Cement Group A	Cement Group B
Installed Capacity (FY25)	~ 60 MTPA	~ 184 MTPA
Renewable Energy Capacity	300+ MW (Wind + Solar) 150 MW (Wind + Solar)	
% of Total Energy from Renewables	40%	25%
Renewable Energy Goal (Next 5 Years)	50% of total energy from renewables	Increase share (specific % not stated)
Energy Intensity Reduction	10% per tonne of cement 7% per tonne of cemen	
CO ₂ Emissions Intensity Reduction	12%	5%
Alternative Fuels Used	Agricultural residues, biomass, plastic waste	Biomass, industrial waste

Green H₂ and SAF Initiatives: Leading Projects & Partnerships in India

Green Hydrogen Projects		
Organization(s)	Project / Initiative	
NTPC Green + Honeywell UOP	SAF from NTPC's CO ₂ + green H ₂ (Vizag)	
IOCL & L&T Energy Green Tech	10,000 TPA green H₂ plant (Panipat Refinery in Haryana)	
BPCL + Sembcorp	JV for large green H₂ production portfolio	
AM Green (Greenko)	4,500 MW RE from CIL to produce green ammonia/H₂	
GAIL	10 MW Electrolyzer for green H₂	
Oil India Limited	99.9% pure green H₂ pilot for fuel cell applications	
SAF Pilots	& Developers	
Honeywell UOP + NTPC Green	Exploring eFining™-based SAF from cement/power sector CO₂	
Xytel India	Pilot plant specialist developing SAF units	
Indian Oil, BPCL, HPCL	Research & development in SAF technologies	

HOLTEC's ROLE IN DECARBONIZATION

HOLTEC's ROLE IN DECARBONIZATION

Carry out studies related to Decarbonization for Cement Plants in the following areas

Area of Service	Description	
Energy & Process Audit	Process debottlenecking for Capacity Upgradation and energy saving projects Identification.	
	Reduce specific heat consumption of Pyro system	
	Optimize electrical equipment and Reduce SPC	
Clinker Factor Reduction	Reduce % of clinker in cement (via SCMs)	
WHRS Integration	Capture waste heat to generate electricity	
AFR Integration	Use of alternative fuels & Raw materials	
Grinding Optimization	Reduction in Power consumption by Increase in production.	
Energy Efficient Design	For Green field Cement Projects	

EXECUTION – DECARBONIZATION PROJECTS

Execution:

- Basic Engineering
- Procurement Services
- Detailed Project Engineering
- Equipment Inspection
- Site Supervision Services

THANK YOU

Holtec Consulting Pvt Ltd

Holtec Centre A Block, Sushant Lok-I, Gurgaon, India

info@holtecnet.com

+91 124 4047900

www.holtecnet.com